
A Whole-Body Stack-of-Tasks compliant control for
the Humanoid Robot COMAN

Alessio Rocchi∗ Enrico Mingo Hoffman∗ Edoardo Farnioli∗† Nikos G. Tsagarakis∗

Abstract—A fundamental aspect of controlling humanoid
robots is the capability to use the entire body to perform
tasks. In this paper we present an ongoing work to add this
capability to the compliant humanoid robot COMAN, designed
at the Italian Institute of Technology. Our control architecture
is composed by a high level, whole-body inverse kinematic
solver and a decentralized, low level, joint impedance control.
Such architecture allows to regulate impedance using different
strategies maintaining a high level of robustness and it has been
developed to perform rescue operations in disaster scenarios.
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INTRODUCTION

The recent DARPA Robotics Challenge showed all the
difficulties that arise when advanced research topics need to be
connected to practical tasks. In particular these tasks have to be
performed in unstructured environments where classical stiff
robots and controllers are not well suited. The main problem
in real world scenarios are the uncertainties associated with
the robot state and the environment state. These uncertainties
make the interaction between the robot and the environment
potentially dangerous. On the other hand, stiff controllers such
as the classical PID position control are robust and can be
implemented in a decentralized way. We think decentralized
control schemes are fundamental in robots that have to operate
continuously, without the possibility to be turned off. Let’s take
for example a semi-autonomous and tele-operated humanoid
bipedal robot: it has always to keep balance also in the case
in which a recoverable hardware or software failure occurs
on its on-board computer, or the communication with the
robot is temporarily severed. Such scenario would require a
restart of the control modules: if the robot is in a stable
configuration the decentralized joint impedance control scheme
can maintain the standing posture in the robot up to the end
of the restart procedure, where a centralized control scheme
could not be restarted without first bringing the robot to a safe
rest configuration.

With these considerations in mind, pure torque controllers
such as in the case of operational space control schemes [8]
are not well suited to systems where robustness is critical, but
at the same time stiff position controllers are not suited for the
interaction as well. A trade-off between the two approaches can
be represented by a combination of a centralized pure kine-
matic control together with joint impedance control. In fact, the
latter can be implemented in a decentralized way and it adds
compliance to the system allowing the possibility to regulate
the impedance both at the joint level and at the Cartesian level
through conservative congruence transformation [9].

Fig. 1. COMAN is a humanoid bipedal robot equipped with series elastic
actuators (SEA) and torque controlled. It has 29 DOFs, 4 Force/torque sensors
(two in the ankles and two in the arms) and one IMU placed in the waist.

In this paper we present the control architecture that we
are developing based on a Cartesian whole-body trajectory
generator and a joint impedance controller for the humanoid
bipedal robot COMAN [13] (Figure 1), developed at the
Italian Institute of Technology. First we introduce some of the
work done in the Whole-Body Inverse Kinematics/Dynamics
compliant control then we introduce our methodology, finally
we show some experimental results obtained on the humanoid
robot COMAN.

RELATED WORKS

Kinematic and dynamic inversion are well known problems
in robotics. In general, given some tasks specified in Cartesian
position, velocity, accelerations or forces, we want to find the
joints position, velocity, accelerations or torque that realize
those tasks. Many solutions to this problem have been pre-
sented for single and multiple kinematic chains [12] [14].

An interesting subset of these algorithms are the ones
based on numerical optimization. If on one side numerical
optimization could be less efficient than other algorithms at
solving the kinematic inversion problem, on the other side
they allow for the explicit introduction of unilateral/bilateral
constraints in the inverse kinematic/dynamic problem, which
are fundamental when working on the real hardware.



DECENTRALIZED JOINT IMPEDANCE CONTROL

Joint Impedance Control is a well known way to control
a robot ensuring a compliant behaviour. The torque sent to n
actuators is computed as

τ = Kq(qd − q)−Kdq̇ + g(q) (1)

where q ∈ Rn and qd ∈ Rn are respectively vectors of actual
and desired joint positions, q̇ ∈ Rn is the vector of actual
joint velocities, Kq ∈ Rn×n is a positive definite joint stiffness
matrix, Kd ∈ Rn×n is a positive definite joint damping matrix
and g(q) ∈ Rn is a vector of gravity compensation torques.

If we compute (1) in a centralized way then Kq and Kd

are symmetric [10]. If we compute (1) in a decentralized way
then Kq and Kd are diagonal since the law (1) is implemented
locally at each actuator, which implies that is not possible
to obtain any Cartesian stiffness at the end effector, rather
we need to set an optimization problem to achieve a ”close”
Cartesian stiffness behavior according to some metric [1].
Notice that in both the cases, the g(q) term as to be computed
in a centralized way since it depends on the robot whole
posture.

WHOLE-BODY INVERSE KINEMATICS

Without loss of generality, we assume that for the ith task
we have a proper function e(q) describing the task error. In this
hypothesis, the time derivative of the error can be computed
as

ėi =
∂ei
∂q

q̇ = Jiq̇.

The convergence of the method can be assured by imposing
an exponential dynamic for the task error, that is

ėi = −λei.

If the robot is redundant with respect to a task, secondary
tasks can be also executed without affecting the performances
of the first one. Supposing we have a set of tasks, each one
described by a couple Ti = (ei, Ji), we would like the robot to
execute them at the best of its capabilities. In order to obtain
this result, we define two kinds of relationships between tasks:
hard priority and soft priority. While looking for a solution, the
performance in executing a task should never be deteriorated
by executing a task with a hard, lower priority, while tasks
put in different, soft priorities can influence the performance
of each other if the error in executing each task becomes
too large. The idea of executing the set of tasks has a well-
known solution in the stack-of-tasks, where hard priorities are
enforced by the order of the task in the stack. To take into
account also soft priorities, we then need to use the augmented
Jacobian formulation, and define J as the augmented Jacobian
of our humanoid robot as in [2]. It must be noted how the
augmented Jacobian formulation alone can not enforce hard
priorities since putting many tasks together can generate an
augmented Jacobian matrix which is not well conditioned. In
our case to generate whole-body motions for our humanoid
robot a series of QP (Quadratic Programming) problems in
cascade is solved [7]. This is a well known method to derive
motions by executing tasks adding bilateral constrains to the
inverse kinematics problem [4].

The problem can be formulated as a stack of quadratic
programs. For the first task, we have:

q̇1 = argmin
q̇

‖J1q̇ + λe1‖

s.t. l1 ≤ A1 q̇ ≤ u1.
(2)

The constraints form used in (2) for the constraints can be
profitably used to express lower and upper bounds for the
variable value as well as equality constraints, corresponding
to using li = bi, or unilateral constraint, corresponding to the
case li = −∞ or bi = ∞). According to the classical stack-
of-task method based on null-space projection [11] the tasks
which needs to be projected in the null-space of the previous
task (hard priority), for the simple case of two hard priorities,
can be written as

q̇ = −λ1J+
1 e1 +

(
I − J+

1 J1
)

(λ2J
+
2 e2). (3)

An equivalent formulation can also be obtained as a stack
of QP programs, which also allows for the introduction of
unilateral and bilateral bounds, solving then a constrained
inverse kinematics (CIK) problem. In general, the nth task will
then be defined as

q̇d = argmin
q̇

‖Jnq̇ + λen‖

s.t. A1q̇ = A1q̇1
...

An−1q̇ = An−1q̇n−1

l1 ≤ A1q̇ ≤ u1
...

ln−1 ≤ An−1q̇ ≤ un−1

ln ≤ Anq̇ ≤ un

(4)

where q̇d is the desired velocity (control variable). In (4)
the previous solutions q̇i, i < n are taken into account with
constraints of the type Aiq̇ = Aiq̇i ∀i < n, so that the
optimality of all higher priority tasks is not changed by the
current solution.

While in (4) the first task has a relationship of hard priority
with respect to the second, and so on, for each level of priority,
a soft priority relationship between tasks can be imposed using
the augmented Jacobian technique. To this aim, introducing
the relative weights βi, the augmented Jacobian and the error
vector can be rewritten as

Jaug =
[
β1J

T
1 β2J

T
2 . . . βnJ

T
n

]T
eaug =

[
β1e

T
1 β2e

T
2 . . . βne

T
n

]T
,

where the soft priority between tasks can then be modified
by changing the relative weights βi, and in particular having
higher priority tasks for bigger βi. Building stacks of aug-
mented tasks allows to mix hard and soft priorities seamlessly.
Tasks at a lower level in the stack can not influence optimality
of tasks at higher levels in the stack, while tasks at the
same level in the stack can influence each other performance.
The solution obtained can then be sent directly to a velocity
controlled robot or integrated in a position controlled robot as

qd = q + q̇δt (5)

where δt is the control loop period.



EXPERIMENTS

The Solver

qpOASES [6] is an open-source C++ implementation of an
online active set strategy [5] QP solver which is part of the
ACADO suite. It implements several automatic regularization
techniques, implements warm-start and allows to specify initial
guesses to speed up the optimization (e.g., usually used with
the previous solution)

Tasks description

In our case, the first task is, according to the augmented
Jacobian formulation [3], equal to

J1 =
[
β11J

T
l wr β12J

T
r wr β13J

T
CoM β14J

T
sw ft

]T
e1 =

[
β11λ11e

T
l wr β12λ12e

T
r wr · · ·

β13λ13e
T
CoM β14λ14e

T
sw ft

]T (6)

where the pedices l_wr and r_wr represent the left and right
wrist, sw_ft represents the swing foot. The Cartesian errors
el wr, er wr, esw ft are in general defined in terms of a position
and orientation error as

ecart =
[
eTp λoe

T
o

]T
where the weight λo normalizes orientation and position errors.
For the first and the second task, we set also a joint limit and
a velocity limit such that

uj lims = (qmax − q) ∆t (7)
lj lims = (qmin − q) ∆t (8)

uv lims = αiq̇max∆t (9)
lv lims = −uv lims (10)

l1 = max (lj lims, lv lims) (11)
u1 = min (uj lims, uv lims) (12)

with uj lims and lj lims the q̇ where α1 < α2 scales the bounds
in order to implement a simple velocity allocation scheme
between the primary and secondary task.

The second task is a postural (joint-space) task which again
follows the formulation of the augmented Jacobian

J2 =
[
β2W1I

T
nJ (1− β2) ITnJ

]T
e2 =

[
β2W1λ11 (q − qd)T + (1− β2)λ12∇qCTg(q)

]T
where Cg(q) is a cost function defined in terms of the gravity
torque vector τg(q) as

Cg(q) = τTg(q)τg(q) (13)

and W1 is a weight matrix, which in the experiment is equal
to the joint-space inertia matrix M(q) This is equivalent as
having two tasks where the second is in the null-space of the
previous one, minimizing

‖W (I − λ11 (q − qd))‖2 (14)

which is equivalent to minimizing

= (I − λ21 (q − qd))T W 2
2 (I − λ21 (q − qd)) , (15)

and the minimization of the minimum effort cost function∥∥I + λ22∇qCg(q)
∥∥
2
. (16)

where ∇qCg(q) is computed numerically by means of two-
point estimation.

By using Jaug we can control the end-effectors and the
Center of Mass of our humanoid robot, considering also shared
kinematic chains (for instance, the torso for the arms). Notice
that the second QP problem is needed to stabilize auto-motions
due to redundancy. Therefore is a solution in the null-space of
the first QP problem that does not compromise the previous
solution. In the last QP we set the postural tasks as well as
minimum effort tasks.

The weights used in the experiment are and

Weight Value meaning
λ11 1.0 convergence speed for left wrist cartesian error
λ12 1.0 convergence speed for right wrist cartesian error
λ13 1.0 convergence speed for CoM position error
λ14 1.0 convergence speed for swing foot cartesian error
λ21 1.0 convergence speed for postural joint error
λ22 1.0 step size along minimum effort gradient
α1 0.5 velocity allocation weight
W2 M(q) postural weight matrix
β11 1.0 relative importance of left wrist cartesian error in first stack
β12 1.0 relative importance of right wrist cartesian error in first stack
β13 1.0 relative importance of CoM position error in first stack
β14 1.0 relative importance of swing foot position error in first stack

TABLE I. WEIGHTS USED IN THE STACK OF TASKS

the optimization algorithm uses the ”reliable”
default settings of qpOASES, with regularisation
enabled enableRegularisation=BT_TRUE with
regularisation ε set with respect to the default one as
epsRegularisation=2E2, the maximum number of
working set calculations nWSR=32.

Experimental setup

We impose a desired position for the postural task qd and
for the end effectors xdl wrist , xdr wrist , xdswing foot , xdCoM as the
joint configuration, end effector position and CoM pose at the
moment at the instant t0 in which the control is started. We
then tune the gain β online in order to switch from a pure
postural task to a mix of postural and minimum effort for the
second task
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