Full Body Control for the Atlas robot

Siyuan Feng Carnegie Mellon University Sep.18 2014

Introduction

- We want a generalized controller that works for a variety of tasks.
- This is a complex optimization problem, so we factor it into two stages.

Related work

- Reference motion generation (Long term)
 - Preview control
 - Instantaneous capture point
 - Centroidal momentum
 - MPC
 - Dynamic programming
- Inverse dynamics (Instantaneous)
 - Operational space control
 - Prioritized inverse dynamics
 - Variable reduction

Outline

- Related work
- Full body controller
 - Inverse dynamics
 - Inverse kinematics
 - State estimator
- Task level controllers
 - Walking
 - Ladder climbing
 - Manipulation
- Discussion and work in progress

Low level controller

- Both inverse dynamics and inverse kinematics
 - ID for compliance
 - IK to battle modeling errors
- ID and IK are formulated as quadratic programming problems optimizing for the current time step.
- Based on the full model (floating base)

QP formulation

$$\min_{\mathcal{X}} 0.5 \mathcal{X}^T G \mathcal{X} + g^T \mathcal{X}$$
$$s.t. \ C_E \mathcal{X} + c_E = 0$$
$$C_I \mathcal{X} + c_I >= 0$$

Cost function:

 $0.5 \|A\mathcal{X} - b\|^2$

Each row represents an objective:

$$A = \begin{bmatrix} w_0 A_0 \\ w_1 A_1 \\ \vdots \\ w_n A_n \end{bmatrix}, b = \begin{bmatrix} w_0 b_0 \\ w_1 b_1 \\ \vdots \\ w_n b_n \end{bmatrix}$$

Inverse dynamics

- $\mathcal{X} = \begin{bmatrix} \ddot{q} & \tau & F \end{bmatrix}^T$
- Use desired motions from the high level controller and estimated robot states to compute target acceleration \ddot{x}^* with $\ddot{x}^* = K_{id}(x_d - x) + D_{id}(\dot{x}_d - \dot{x}) + \ddot{x}_d$
- $\ddot{x} = J\ddot{q} + \dot{J}\dot{q}$

Inverse Dynamics (QP)

Objectives:

- Task objectives
- CoM acceleration
- Change of angular momentum
- Reference pose tracking
- Regularize controls / acc. Inequality constraints:
- CoP
- Friction cone
- Joint torque

Equality constraints:

Dynamics

 $\begin{bmatrix} w_1 A_1 \\ w_2 A_2 \\ \vdots \\ & \ddots \\ & & & \\$

 $A_{COM} = W_{COM} \int_{COM} d_2$ $b_{COM} = W_{COM} \int_{T} d_2$ $j_{COM} \dot{q}$ $\begin{bmatrix} M(q) & -J^T(q) & -I \end{bmatrix} \begin{vmatrix} q \\ F \end{vmatrix} = -h(q, \dot{q})$

Inverse kinematics

- Maintains its own state q_{ik}
- $\mathcal{X} = \dot{q}_{ik}$
- Integrate to get q_{ik}
- Uses desired motions from high level controller and internal states to compute target velocity with feedback

 $\dot{x}^* = K_{ik}(x_d - x) + \dot{x}_d$

State estimation

- Pelvis position and velocity are estimated with EKF.
 - Process model: IMU's acceleration measurement
 - Observation model: FK results assuming known stationary contacts
- Pelvis orientation comes directly from IMU.
- Low pass filter joint velocities

Simulated walking

Optimizing CoM trajectory

- Trajectory optimization with a point mass model using Differential Dynamic Programming (DDP)
- Generalize to nonlinear models

$$X = (x, y, \mathbf{z}, \dot{x}, \dot{y}, \dot{\mathbf{z}})$$
$$u = (p_x, p_y, \mathbf{F}_z)$$

$$\begin{bmatrix} \ddot{x} \\ \ddot{y} \\ \ddot{z} \end{bmatrix} = \begin{bmatrix} \frac{(x - p_x)F_z}{mz} \\ \frac{(y - p_y)F_z}{mz} \\ \frac{F_z}{m} - g \end{bmatrix}$$

DDP

• One step cost function

$$L(X, u) = 0.5(X - X^*)^T Q(X - X^*) + 0.5(u - u^*)^T R(u - u^*)$$

Implementing the DRC Trails tasks on Atlas

- Human in the loop "visual" servoing
 - Manual foot step / hand hold selection
 - Desired targets are specified incrementally.
- Compensate modeling errors with integrators
- Static walking:
 - Toe off is necessary for the terrain task.
 - Stance ankle is torque controlled.
- Ladder climbing:
 - Use hook hands
 - Scripted climbing sequence
 - Intentionally lean on the railings to stop yaw rotation
- Manipulation:
 - Motion scripts
 - End effector tracking

Atlas static walking

Atlas ladder climbing

Eric Whitman

Atlas manipulation

Eric Whitman, Felipe Polido, Henrique Polidy

Remarks

- Controller
 - Divide and conquer
 - Go slow, use integrators
 - Inconsistency between IK and ID
- Atlas
 - Very repeatable
 - Arms have only 6 DoF, and are very weak.
 - Leg position and torque sensing are pre-transmission
 - Induce big FK errors.
 - Stiction degrades torque control.

Work in progress

- Adding full body motion planning for manipulation
- Improve joint level servos
- Experimenting with integrating desired acceleration into desired velocity (replacing IK)
- Estimate modeling error online
- Adding angular momentum in the high level controller
- Introduce fixed delays in ID
- Self collision avoidance

Self collision avoidance

Felipe Polido

Questions?

Dilemma: ID + IK

- Plan IK first, then do ID with IK's solution
 - Lose compliance at contacts
 - Vulnerable to unexpected perturbation
- Integrate ID's acceleration into velocity and position
 - Controller becomes unstable due to modeling error and delays.

Next step

- Build actuator model for better servo performance
- High level controller
 - Add angular momentum in the simple models
 - Re-optimize step timing and location
- Low level controller
 - Model modeling errors / better state estimation
 - Coordinate IK and ID better
 - Incorporate value functions in the QPs
 - Optimize valve command in ID

Atlas static walking

Atlas static walking

