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Abstract— Recently, several formulations have been proposed
to add inequality constraints to multi objective prioritized
optimization problems. How to solve this problems with only
equality constraints is a well known topic in robotics. Inequality
constraints behave as equalities when they reach their bounds,
so ideally we shouldn’t bother about them before we reach
them. How we take them into account and what to do when
they are reached affects drastically the computational effort
of solving the problem. We present and derive an efficient
way to deal with these problems using an off the shelf
Quadratic Programming solver and choosing an appropriate
solving strategy. We finally apply the proposed method to do
whole body control in real time on a humanoid robot with 44
dof using a hierarchy of objectives.

I. INTRODUCTION

Control of humanoid robots is a challenging task due to
their high number of degrees of freedom and their floating
base underactuation. An intuitive way to program them is by
combining different objectives and solve for the joint level
commands that will minimise the error of the desired ob-
jectives. It often occurs that the different objectives compete
against each other, and it is up to the user to decide which
one should the optimization favour. There are two ways to
do this: weighting and prioritization. Weighting suffers the
problem that the associated gains with each level are not
representative of the importance criterion, this is due to the
fact that the matrix norms of each objective are different.
The second way is to enforce a strict prioritization between
the objectives, that we will call levels of the hierarchy. This
approach is known as lexicographic optimization. In section
II we will describe how to solve hierarchical quadratic
problems with equality and inequality constraints. Section
III reviews the basics of constraint optimization theory, with
emphasis on problems that have quadratic form. Section IV
introduces the active set algorithms and explains why we use
the dual active set method to increase robustness. Finally in
section V we will explain how we use the above introduced
concepts to do whole body control with REEM-C biped
humanoid.

II. HIERARCHICAL QUADRATIC PROGRAMMING

The k levels of the hierarchy want to minimize the squared
norm of

‖Akx− bk‖22 (1)

This cost function has a quadratic form, where Ak usually
maps increments in the generalized coordinates of the robot
to a task space increment bk. The objectives can be defined at

Fig. 1: REEM-C performing whole body control with a
hierarchy of objectives: joint limits � self collision avoidance
� fixed feet + com centered � gaze � hands position � torso
orientation upright.

the kinematic and dynamic level. The basis of the null space
of Ak will be indicated with Zk and the projection operator
into the null space with Pk. We will introduce different
approaches to find the optimal x?p between all the levels
subject to prioritization, equality and inequality constraints.

1) Recursive null space projection for equality con-
straint: Recursive null space projection was proposed in
[Siciliano and Slotine, 1991]. At each level k we solve the
associated least squares problem and project the solution
in the null space of the previous one. This approach re-
quires solving an c × m problem at each level, where c



are the number of rows of Ak and m the size of the
state vector of the robot. Pk can be found recursively
[Siciliano and Slotine, 1991].

x?p =

p∑
k=1

(AkPk−1)
+(bk −Akx

?
k−1) (2)

2) Searching in the null space basis for equality con-
straints: [de Lasa and Hertzmann, 2009] introduced an opti-
mization that allows to reduce the computation at each level.
Instead of solving over the entire m dimensional state of the
robot, the authors propose to search for the solution directly
in the remaining null space of the previous solved levels.
This formulation also lets us monitor the remaining degrees
of freedom.

min
zk,wk

‖wk‖

s.t. Ak(x
?
k−1 + Z̃k−1zk) = bk +wk

(3)

The optimal solution can be calculated recursively

xk = xk−1 + Z̃k−1(AkZ̃k−1)
+(bk −Akx

?
k−1) (4)

Where Z̃k is the the multiplication of null spaces of all
the previous levels computed recursively as

Z̃k = Z̃k−1Zk (5)

It is important to note how the size of the matrices Z̃k
decreases as we advance through the hierarchy while in (2)
all the Pk remain constant in size through the hierarchy.

3) Cascade QP with inequality constraints: Given a sin-
gle quadratic objective with associated inequality constraints
on the decision variables we can use a QP solver to get
the optimal solution that is feasible with the associated
constraints. The question arises on how to solve a hierarchy
of such problems, each with its own associated inequality
constraints. [Kanoun et al., 2011] proposed to solve this
problem using a cascade of QP’s. Each level k is solved
having as additional constraints that the solution cannot
modify the optimal residual found in the previous k − 1
levels.

min
xk,wk,vk

‖wk‖+ ‖vk‖

s.t. Akxk = bk +wk

Ckxk ≤ dk + vk

Ak−1xk = bk−1 +w?
k−1

Ck−1xk ≤ dk−1 + v?k−1

(6)

Ak−1, bk−1, wk−1, v?k−1 is the concatenation of the
corresponding k − 1 matrices and vectors.

4) Cascade QP with reduction of the equality constraints:
Following the idea in [de Lasa and Hertzmann, 2009] we
can remove the degrees of freedom of the equality constraints
on each level and only leave in the cascade the inequality
constraints. If an inequality constraint is active, all the
subsequent levels will loose a degree of freedom, just as
if the constraint would had been an equality. We note that
this is the intuition behind the active set method that we

will introduce later to solve each QP. This formulation has
been used in [Alexander Herzog, 2013] to solve prioritized
inverse dynamics.

min
xk,wk,vk

‖wk‖+ ‖vk‖

s.t. Ak(x
?
k−1 + Z̃k−1zk) = bk +wk

Ck(x
?
k−1 + Z̃k−1zk) ≤ dk + vk

Ck−1(x
?
k−1 + Z̃k−1zk) ≤ dk−1 + v?k−1

(7)

Using the last formulation lets us use an off the shelf
QP solver, and potentially if there are no active inequality
constraints the computational cost will be the same as 3
(depending on the QP algorithm used).

We could further remove the degrees of freedom gained
by the active inequality constraints to reduce the size of
remaining null space. Because the inequalities become active
and inactive during the optimization the Z̃k will change cor-
respondingly gaining or loosing a degree in its rank. To avoid
recomputing the decompositions, in [Escande et al., 2014]
the authors present an efficient way to update the null space
of every level using a new decomposition called the HCOD
and a custom active set QP optimizer.

III. OPTIMIZATION THEORY REVIEW

A. General optimization program

Given a nonlinear problem of the form

min
x

f0(x)

s.t gi(x) ≤ 0, hj(x) = 0
(8)

where f0(x) gi(x) and hi(x) are continuous differentiable
functions, the necessary conditions for a local minimum x?

to the problem are called the KKT (Karush-Kuhn-Tucker)
conditions:
• Stationary.

L = ∇f(x∗) +
m∑
i=1

µi∇gi(x∗)

+
l∑

j=1

λj∇hj(x∗) = 0 (9)

• Primal feasibility: Satisfaction of the original problem
constraints.

gi(x
∗) ≤ 0, ∀i = 1, . . . ,m

hj(x
∗) = 0, ∀j = 1, . . . , l (10)

• Dual feasibility: The slack variables associated with
inequalities must non negative.

µi ≥ 0,∀i = 1, . . . ,m (11)

• Complementary slackness: If an inequality is not active
its associated slack variable must be 0.

µigi(x
∗) = 0, ∀i = 1, . . . ,m (12)



B. Quadratic program

We are interested in a particular form of problem where
the objective is quadratic and the constraints are affine. This
problem is convex, making the KKT conditions not only
necessary but also sufficient, meaning that if we find a local
solution it will also be the global solution.

min
x

J(x) =
1

2
xTQx+ cTx

s.t Ax = b

Ix ≥ d

(13)

C. Dual Quadratic program

The above optimization problem can be solved from a
different point of view called the Lagrange dual problem
[Fletcher, 1987], which consists on the original problem
with the constrains added to the objective function with
an associated multiplier. This new function is called the
Lagrangian (9). The problem now consists on optimizing
over the dual variables λ that are formulated as functions
of the primal variables. The solution to the dual problem
provides a lower bound to the primal problem (weak duality).
The difference between the optimal value of both problems
is called the duality gap, which in the case of convex
optimization problems is zero (strong duality), meaning that
we will arrive to the same global optimum independently
if we choose the primal or dual. We will exploit this fact
to add robustness to the optimization algorithm that we will
present in section IV. We drop the equality constraints for
the sake of simplification in the following derivation for sake
of brevity.

max
x,λ

J(x) =
1

2
xTQx+ cTx− λ(Ix− d)

s.t Qx+ c− ITλ = 0

λ ≥ 0

(14)

We can use the constraints on the dual to reduce the
maximization only on the dual variables

max
λ

J(x) = −1

2
λT (IQ−1IT )λ+

λT (d+ IQ−1c)− 1

2
cTQ−1c

s.t λ ≥ 0

(15)

Once the λ? are known we can get x? with Qx? = ATλ?−c

IV. ACTIVE SET ALGORITHMS

The primal active set method (Algorithm 2) belongs to the
modified type simplex methods. This method starts with a
feasible point and iterates searching for the optimal solution
along the edges of the feasible set. The algorithm converts
an inequality constraint to an equality one if it’s violated,
and solves the associated equality constraint problem. The
indices of the activated inequalities are stored in the active
set A. Information from the Lagrange multipliers is used to
add or remove constraints from A. The main feature of this

Data: A, b, x is the current state, p is the step
direction, A is the current active set

Result: α the step length in the step direction p that
does not violate any primal constraint, cst is
the identifier of the constraint with minimum α

α = min

1, min
i/∈A
aTi p<0

bi − aTi x
aTi p

 (16)

Algorithm 1: Primal line search

Data: A QP of the form (13), a feasible starting point
with its associated active set A

Result: Optimal solution x?, with optimal active set
A, if the maximum iterations is reached the
algorithm has failed

iter = 0;
while iter < max iterations do

Compute the solution p to the equality QP;
Compute step length α, cst using Algorithm 1;
x? = x+ αp;
if α = 1 then

Compute Lagrange multipliers λk to test
optimality;
{v, cst} = min{1, λi};
if v >= 0 then

TERMINATE Optimal solution found;
else
A := A\{v}

else
A := A ∪ {cst}

iter = iter + 1
Algorithm 2: Primal active set algorithm

method is that it finds the optimal solution while staying
primal feasible (10), due to this the optimization can be
stopped at any point and the primal constraints will still be
satisfied.

The dual active set method [Goldfarb and Idnani, 1983]
is identical to the primal with the form of the objective
changed to (15). The algorithm maintains dual feasibility
(11) until primal feasibility is achieved (dual optimality).
It has the benefit that it does not need an initial feasible
point since the origin is always a dual feasible point. Once a
primal constraint becomes feasible we can optionally leave
it feasible by modifying the line search in Algorithm 1.

A. Degeneracy

Cycling is when a constraint is deactivated in one iteration
and reactivated in the next one cyclically not allowing the
solver to converge to the solution. One of the main sources of
cycling in active set methods is degeneracy in A. Degeneracy
happens when the normal of the constraints gets close to
be linearly dependent, for example when a kinematic chain
becomes singular or two tasks have similar constraints. The



dual active set solves this problem by not having degeneracy
in the constraints by construction. The constrains are only the
positiveness associated with the Lagrange multipliers, having
a constraint matrix that is an identity. The caveat is that Q
must be strictly positive definite. If this is not the case, small
regularization can be added to its diagonal to enforce this
property.

V. WHOLE BODY CONTROL

We will create a combination of tasks that is typical to
control the behaviour of a humanoid robot. The objectives
will be at kinematic velocity level with the following hier-
archy: joint limits � self collision avoidance� fixed feet +
com centered � gaze � hands position � torso orientation
upright. Fig. 1 shows the result of the optimization in
different configurations. A small description of each task:
• Center of mass: This task relates joint velocity to the

center of mass velocity of the robot. It is used to restrict
the projection on the ground of the center of mass to
stay in the middle of the ankles of the robot.

• Reach: This task relates joint velocity to the cartesian
velocity of a link. Given the actual position of a link
and its desired one, a velocity target is created with a
proportional controller to reach the desired target.

• Fixed Constraint: This task has the same form as the
previous one, but the target is zero, meaning that the
link should have zero velocity an thus stay fixed.

• Gaze: This task maps the velocity of a 3d point to its
2d image velocity. Computing the error between the 2d
projection of a 3d point and the origin of the camera
frame we can make the robot look directly at the desired
point with a target proportional to the error.

• Self collision: Given a simplification of the robot, where
every link is fitted with a minimum volume capsule
[Stasse et al., 2008], we can avoid self collision by
adding an inequality to the relative velocity between
the capsules of two links. The relative velocity has to
be sufficiently small to avoid interpenetration.

• Joint limit: We can avoid joint limits by restricting the
maximum allowed velocity proportional to how far we
are from the limits.

VI. CONCLUSION

We have proposed a solution to resolve the redundancy
of a humanoid robot in real time using a sequence of QP
problems that decrease in size and the dual active set strategy
to solve each QP. This allows us to generate feasible and safe
kinematic configurations. We are currently working in adding
dynamics into the optimization and testing the controller on
the real robot.

REFERENCES

[Alexander Herzog, 2013] Alexander Herzog, Ludovic Righetti, F. G.
P. P. S. S. (2013). Experiments with a hierarchical inverse dynamics
controller on a torque-controlled humanoid.

[de Lasa and Hertzmann, 2009] de Lasa, M. and Hertzmann, A.
(2009). Prioritized optimization for task-space control. In Intelligent
Robots and Systems, 2009. IROS 2009. IEEE/RSJ International
Conference on, pages 5755–5762.

[Escande et al., 2014] Escande, A., Mansard, N., and Wieber, P.-
B. (2014). Hierarchical quadratic programming: Fast online
humanoid-robot motion generation. International Journal of Robotics
Reasearch. in press.

[Fletcher, 1987] Fletcher, R. (1987). Practical Methods of Optimization;
(2Nd Ed.). Wiley-Interscience, New York, NY, USA.

[Goldfarb and Idnani, 1983] Goldfarb, D. and Idnani, A. (1983). A
numerically stable dual method for solving strictly convex quadratic
programs. Mathematical Programming, 27(1):1–33.

[Kanoun et al., 2011] Kanoun, O., Lamiraux, F., and Wieber, P.-B.
(2011). Kinematic control of redundant manipulators: Generalizing
the task-priority framework to inequality task. 27(4):785–792.

[Siciliano and Slotine, 1991] Siciliano, B. and Slotine, J.-J. (1991). A
general framework for managing multiple tasks in highly redundant
robotic systems. In Advanced Robotics, 1991. ’Robots in Unstructured
Environments’, 91 ICAR., Fifth International Conference on, pages
1211–1216.

[Stasse et al., 2008] Stasse, O., Escande, A., Mansard, N., Miossec,
S., Evrard, P., and Kheddar, A. (2008). Real-time (self)-collision
avoidance task on a hrp-2 humanoid robot. In Robotics and
Automation, 2008. ICRA 2008. IEEE International Conference on,
pages 3200–3205.


	INTRODUCTION
	HIERARCHICAL QUADRATIC PROGRAMMING
	Recursive null space projection for equality constraint
	Searching in the null space basis for equality constraints
	Cascade QP with inequality constraints
	Cascade QP with reduction of the equality constraints


	OPTIMIZATION THEORY REVIEW
	General optimization program
	Quadratic program
	Dual Quadratic program

	Active set algorithms
	Degeneracy

	WHOLE BODY CONTROL
	CONCLUSION
	References

